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The Decay of Isotropic Turbulence

in a Rapidly Rotating Frame

By C. G. SPEZIALE 1, N. N. MANSOUR 2, and R. S. ROGALLO 2

A direct numerical simulation of the decay of initially isotropic turbulence in a

rapidly rotating frame was conducted. This 128x128x128 simulation was completed

for a Reynolds number Rex = 15.3 and a Rossby number Ro_ = 0.07 based on

the initial turbulent kinetic energy and Taylor microscale. The numerical results

indicate that the turbulence remains essentially isotropic during the major part of

the decay (i.e., beyond the point where the turbulent kinetic energy has decayed

to less than 10% of its initial value). The rapid rotation has the primary effect of

shutting off the energy transfer so that the turbulence dissipation (and hence the

rate of decay of the turbulent kinetic energy) is substantially reduced. Consequently,

the anisotropy tensor remains essentially unchanged while the energy spectrum

undergoes a nearly linear viscous decay -- the same results that are predicted by

Rapid Distortion Theory which is only formally valid for much shorter elapsed times.

Surprisingly, no Taylor-Proudman reorganization of the flow to a two-dimensional

state is observed. The implications that these results have on turbulence modeling

are discussed briefly along with prospective future research.

1. Results

The research conducted this summer at the CTR concentrated on the develop-

ment of improved Reynolds stress models for the description of rotating turbulent

flows. It is envisioned that such models could also have important applications in

the description of curved turbulent flows as a result of the analogy that can quite
often be drawn between rotation and curvature.

In order to gain insight into the effects of rotation, a direct numerical simula-

tion of decaying isotropic turbulence in a rapidly rotating frame was conducted. A

Reynolds number of Rex = 15.3 based on Taylor microscale and a Rossby number

of Ro_ = 0.07 were considered (this Rossby number is more than an order of magni-

tude smaller than those which were considered previously). This direct simulation

yielded some surprising results. As has been shown in previous numerical simu-

lations and experiments (see Bardina, Ferziger and Rogallo 1985, and Wigeland

and Nagib 1978), the turbulence remained isotropic after the rotation was imposed.
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FIGURE 1. Transfer spectra as function of k12 = v/k_ + k22 and k3. a) Initial

distribution (isotropic decay), b) Shortly after the rotation is started (t_o/q_).

The rotation killed the energy transfer (through the generation of inertial waves; see

Fig. 1) and the turbulence underwent a pure viscous decay as would be predicted

by Rapid Distortion Theory (RDT). More precisely, the energy spectrum, E(k,t),

decayed in time in good agreement with the formula,

E(k,t) = E(k,to) exp [-2vk2(t - to)] (1)

where v is the kinematic viscosity (see Fig. 2). Equation 1 is obtained from RDT

for this problem. The surprising finding was that Eq. (1) remained an excellent

approximation even after the turbulent kinetic energy had decayed to only 10% of

its initial value. As a result of the energy transfer being suppressed, the turbulence
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FIGURE 2. Energy spectra, E,,,_, E,,_ and E,ww (q2/q_ = 0.03).

decayed slower in the rotating frame (see Fig. 3). Although the integral length

scales showed the development of mild anisotropies, there was no discernable Taylor-

Proudman reorganization to a two-dimensional flow. The tensor,

]J l I

A_ = _u_,_uk, j (2)

which is normalized by the dissipation rate e, remained isotropic (under a complete

Taylor-Proudman reorganization, the velocity gradient along the axis of rotation

u,3 _ 0 as the rotation rate ft _ oo and, hence A33 << All,A22). It can be shown

that the RDT solution does not undergo a Taylor-Proudman reorganization since

the Fourier transform of the velocity,

fii(k, t) oc A(k ) exp(ia(k )lit) (3)

and, hence, in the limit as ft H oo,

10_i
fl Of - 0(1) (4)

where wi is the vorticity vector.

In order for the Taylor-Proudman theorem to apply, (1/t2)Ow_/Ot must vanish as

ft _ oo. Since RDT becomes a better approximation for longer instants of time

as ft gets larger (for a given turbulence level), it appears that no Taylor-Proudman
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FIGURE 3.
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Effect of rotation on the decay of the turbulent kinetic energy.

reorganization will occur in a rapidly rotating isotropic turbulence. Previous in-

vestigators (c./., Bardina, Ferziger and Rogallo 1985) had speculated that such a

reorganization to a two-dimensional flow could occur.

Since the results of these direct simulations on rotating isotropic turbulence

clearly demonstrate (in support of Wigeland and Nagib 1978, and Bardina, Ferziger

and Rogallo 1985) that there is a reduction in the dissipation rate with increasing

rotation rate, it is clear that modifications need to be made in the dissipation rate

equation. All of the commonly used dissipation rate equations (c./., Launder, Reece

and Rodi 1975) predict that for a given mean flow, a system rotation has no effect

on the evolution of the dissipation rate in contradiction of experimental and numer-

ical simulation data. A recently proposed model by Bardina, Ferziger and Rogallo

(1985) given by,
_2

= -c, - (5)

for an isotropic turbulence (where _ is the dissipation rate, q2 is the trace of the

Reynolds stress tensor, and C2 = 11/3 and C1 = 0.15 are empirical constants)

was tested. It was found that this model, which compared favorably with the data

of Wigeland and Nagib (1978) performed very poorly at the rapid rotation rates

considered herein (see Fig. 4). Consequently, it appears that the dependence of the

dissipation rate equation on f_ is unlike in Eq. (5). Furthermore, it is not clear

at this time how such a modified dissipation rate equation could be generalized to

anisotropic turbulent flows. Any smooth function of the invariants,

2 2
_'_ij _ij, _ij nj, _ij Sij, (6)
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FIGURE 4. Comparison of the decay of the turbulent kinetic energy with the

model of Bardina, Ferziger & Rogallo (1985).

where,
1 1

a_j = _ (u_,j - v_,_), S_j = _ (v_,j+ Uj,_) (7)

Ui is the mean velocity, and rij is the Reynolds stress tensor, reduce to functions
2

of f_ in the limit of rotating isotropic turbulence (a model containg f_ijSij was

proposed by Pope 1978). Work on the development of a more generM dissipation

rate equation which can account for rotation in inhomogeneous turbulent flows was

begun during the summer program and will continue in the future.

2. Future work

The time development of the energy spectrum for an isotropic turbulence is given

by,

/_(k,t) = T(k,t)- 2vk2E(k,t) (8)

where T(k,t) is the energy transfer. The equation for the dissipation rate, e, can

be derived by multiplying Eq.(8) by 2vk2dk and integrating over all wave numbers,

/0 /0i = 21., k2T(k,t)dk - 4v 2 k4E(k,t)dk (9)

The commonly used model for the right-hand-side of Eq. (9) is given as follows:

_0 °° _0 °° e22v k2T(k,t)dk-4u 2 k'E(k,t)dk = -C1-_ (10)
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where q2 is twice the turbulent kinetic energy. Any modification to the above model

that takes into account the effect of rotation, has to reflect the fact that the first

term in Eq. (10) vanishes for high rotation rates.

Work was begun on the development of improved second-order closure models.

In all of the currently popular second-order closure models it is assumed that the

deviatoric part of the velocity pressure-gradient correlation DIIij and the deviatoric

part of the dissivation rate corelation n D..j urp f,,nrt;nn_ ,-¢ --.- and u ...., .............. "S' _ij, "Qij ........ ,

we considered the most general model of the form

DIIkt + oDkt = f_t(rq, Sij, flij) (11)

Equation (8) should be subjected to the constraints:

(i) Form invariance under a change of coordinates (c.f., Smith 1971).

(ii) Material frame-indifference in the limit of two-dimensional turbulence (see

Speziale 1981).

and the fact that DIIij, and DDij are traceless. This led to the most general form,

- - §_.,.rm._kl)

q4 -
3

2
+3_(_k_,..S.z-- + nm_,..S._ -

q2 2
+37--(_k_S_.S._ + rt_S=.5;.k - _r,..S..pSp,.,Sk_)

21
+/3s-(rkmr,..S..S.t + r..r._,,S,,.S.k - -3r._.r,,pSp.S.,.$kz)

1 (rkmr._.fl.l + r._r._.fl.k)
+2(1 -/39)(.t_,_l]t,_ + r.nn_,n) +/39 _-_

(12)
The coefficients /3i are functions of the invariants. This model is substantially

simpler than previous attempts at general representations which contained several

redundant terms (c.f., Reynolds 1987 for a summary of such previous representa-

tions). In the limit of a two component turbulence, Realizability (Shih 1987, private

communication) requires that

1
/3_=2- .--_'I,o',,/33

z£ o

/32 =0

/34 =0
1

/3s =--(_.mr-S-,k/3e +
lCrkzS.uS,_k/37 1+ --'l'klTlmSmnS.k/38 )/q'pq_pq

(13)
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and hence, in the first approximation this model has only five undetermined con-

stants. This model will be investigated in the future in collaboration with Dr. T.-H.

Shih. It is interesting to note that this model is consistent with the numerical re-

suits of this study which predict that an initially isotropic turbulence in a rotating

frame decays isotropically.
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